DNA@home:修订间差异
更正官网地址,添加“如何加入项目” |
添加英文项目简介 |
||
第23行: | 第23行: | ||
|URL=http://dnahome.cs.rpi.edu/dna/ | |URL=http://dnahome.cs.rpi.edu/dna/ | ||
}} | }} | ||
<br> | |||
The goal of DNA@Home is to discover what regulates the genes in DNA. Ever notice that skin cells are different from a muscle cells, which are different from a bone cells, even though every cell in your body has every gene in your genome? That's because not all genes are "on" all the time. Depending on the cell type and what the cell is trying to do at any given moment, only a subset of the genes are used, and the remainder are shut off. DNA@home uses statistical algorithms to unlock the key to this differential regulation, using your volunteered computers. | |||
The primary means by which genes are regulated is at the stage of "transcription" where a molecule called a polymerase reads along the DNA from the start of the gene to the end of the gene creating an RNA messenger. Other molecules, called transcription factors, bind to the DNA near the beginning of the gene and can help to recruit the polymerase or they can get in the way of, or inhibit, the polymerase. It is the presence or absence of the binding of these transcription factors that determine whether a gene is "on" or "off" but, for the most part, scientists do not know which transcription factors are responsible for regulating which genes. | |||
Transcription factors have "fingers" that prefer a certain short, sloppy pattern in the nucleotides "letters" of a DNA sequence, but in many cases we don't know what these patterns are. Our software looks for short sequences of nucleotides that appear more-or-less the same near multiple gene beginnings and which also appear more-or-less the same in the corresponding locations in the genomes of related species. As DNA sequences are huge, ranging from millions to billions of nucleotides, and these sequences are short and only approximately conserved from one site to the next, this is a real needle-in-the-haystack problem and requires lots of computational power. We hope that your computers can help. | |||
Our current plans involve tackling the Mycobacterium tuberculosis genome to thoroughly understand how tuberculosis accomplishes what it does -- so that others can use that information to stop this disease that kills millions every year. We also plan to tackle Yersinia pestis, the cause of bubonic plague. | |||
DNA@Home is based at [http://www.rpi.edu/ Rensselaer Polytechnic Institute]. | |||
<br> | <br> | ||
{{BOINC topics}} | {{BOINC topics}} | ||
[[Category:分布式计算项目]][[Category:BOINC 平台上的项目]] | [[Category:分布式计算项目]][[Category:BOINC 平台上的项目]][[Category:待翻译]] |
2010年7月31日 (六) 21:49的版本
DNA@home | |
---|---|
LOGO 未发布 DNA@home logo | |
无屏幕保护图形 | |
开发者 | Rensselaer Polytechnic Institute |
版本历史 | 规划中 |
运算平台 | ![]() ![]() |
项目平台 | BOINC |
程序情况 | 规划中 |
任务情况 | 规划中 |
项目状态 | 规划中 |
项目类别 | 规划中 |
优化程序 | 无 |
计算特点 | CPU密集: |
官方网址 | DNA@home |
![]() |
[{{{rss}}} 通过 RSS 获取项目新闻] |
DNA@home 是由美国伦斯勒理工学院主办的基于 BOINC 平台分布式计算项目,项目试图寻找人类基因规律。
目前项目正在规划中。
如何加入项目
该项目基于 BOINC 平台,简要的加入步骤如下(已完成的步骤可直接跳过):
- 下载并安装 BOINC 的客户端软件(官方下载页面或程序下载)
- 点击客户端简易视图下的“Add Project”按钮,或高级视图下菜单中的“工具->加入项目”,将显示向导对话框
- 点击下一步后在项目列表中找到并单击选中 DNA@home 项目(如未显示该项目,则在编辑框中输入项目网址:http://dnahome.cs.rpi.edu/dna/ ),然后点击下一步
- 输入您可用的电子邮件地址,并设置您在该项目的登录密码(并非您的电子邮件密码)
- 再次点击下一步,如项目服务器工作正常(并且有适合自身操作系统的计算程序),即已成功加入项目
更详细的加入方法说明,请访问 BOINC 新手指南 或 BOINC 使用教程。
本站推荐您加入 Team China 团队,请访问项目官方网站的 团队检索页面,搜索(Search)并进入 Team China 的团队页面,点击页面中的 Join 并输入用户登录信息即可加入!
The goal of DNA@Home is to discover what regulates the genes in DNA. Ever notice that skin cells are different from a muscle cells, which are different from a bone cells, even though every cell in your body has every gene in your genome? That's because not all genes are "on" all the time. Depending on the cell type and what the cell is trying to do at any given moment, only a subset of the genes are used, and the remainder are shut off. DNA@home uses statistical algorithms to unlock the key to this differential regulation, using your volunteered computers.
The primary means by which genes are regulated is at the stage of "transcription" where a molecule called a polymerase reads along the DNA from the start of the gene to the end of the gene creating an RNA messenger. Other molecules, called transcription factors, bind to the DNA near the beginning of the gene and can help to recruit the polymerase or they can get in the way of, or inhibit, the polymerase. It is the presence or absence of the binding of these transcription factors that determine whether a gene is "on" or "off" but, for the most part, scientists do not know which transcription factors are responsible for regulating which genes.
Transcription factors have "fingers" that prefer a certain short, sloppy pattern in the nucleotides "letters" of a DNA sequence, but in many cases we don't know what these patterns are. Our software looks for short sequences of nucleotides that appear more-or-less the same near multiple gene beginnings and which also appear more-or-less the same in the corresponding locations in the genomes of related species. As DNA sequences are huge, ranging from millions to billions of nucleotides, and these sequences are short and only approximately conserved from one site to the next, this is a real needle-in-the-haystack problem and requires lots of computational power. We hope that your computers can help.
Our current plans involve tackling the Mycobacterium tuberculosis genome to thoroughly understand how tuberculosis accomplishes what it does -- so that others can use that information to stop this disease that kills millions every year. We also plan to tackle Yersinia pestis, the cause of bubonic plague.
DNA@Home is based at Rensselaer Polytechnic Institute.